?

Log in

No account? Create an account
Предыдущий пост Поделиться Следующий пост
Агитирую за старого друга
ludmilapsyholog
С Всеволодом Луховицким мы знакомы уже почти лет 20, ну 18 точно. Когда-то мы общими усилими реанимировали проект учебника русского языка для школьников, который начали еще в 60-е ведущий российские лингвисты Московской школы под руководством М.В. Панова. Учебник был написан, но не особо востребован школой и был очень малоизвестен. Что было совсем неправильно, потому что ситуация с русским языком в нашей школе очень невеселая. Не буду сейчас подробно вдаваться, скажу кратко так: все эти учебники Баранова-Бабайцевой-Разумовской, по которой учились и учатся почти все российские школьники,  имеют примерно такое же отношение к науке о языке, как физика Аристотеля к современной физике. Когда детям втуляют, что местоимение -- часть речи, а существительное потому существительное, что называет предмет -- это как если бы на географии рассказывали, что земля стоит на трех китах, а на химии про теплород и философский камень объясняли. Так вот, учебник, который мы хотели вернуть к жизни, был написан настоящими учеными, причем ведущими, при этом с юмором, на живых примерах и доступно. Мы с Всеволодом и еще одной замечательной учительницей, Валентиной Васильевной Дибобес, немножко встали на уши и состоялось  переиздание учебника, Михаил Викторович еще успел принять в нем участие. Потом учебник начал потихоньку обрастать методичками и рабочими материалами. С тех пор уже вышло несколько переизданий и он вполне себе живет.
Потом меня унесло из школы, а Всеволод придумал преподавать детям право через ролевые игры, и тоже этим классно занимался и до сих пор занимается. И по Панову русский язык преподает -- у моей дочки, например,--  ребенок в восторге
А еще он создал профсоюз учителей и помогает множеству российских учителей решать трудовые споры.
И пытается отбить от чиновничьих реформ то, что отсталось от нашего образования.
Это я все к тому, что вот здесь можно за него проголосовать. Я уже, и вас призываю
http://premia.mn.ru/premia_civil/20121120/331062824.html


  • 1
Служебные по функции делятся: предлоги обслуживают управление, союз -- связи между равнозначными синтаксическими единицами, а частица вообще всякие оттенки смысла и модальности. Наречие -- полноценная часть речи, неизменяемая. От служебных отличается тем, что у нее своя самостоятельная синтаксическая роль (член придложения).
То есть часть речи это совокупность определенных грамматических форм (как изменется) и синтаксических функций.

Теперь у меня всё сложилось, благодарю!
А ведь так действительно логичнее, чем всякие "признак предмета по действию".
Кстати, это объясняет, почему мы однозначно понимаем, где какая ЧР в бессмертном "Сяпала калуша...". Ведь сразу понять, что "сяпать" - глагол, "калуша" - существительное, а "кузявый" - прилагательное, хотя лексически хрен их разберёт, где признак, где действие и кто тут кого предметом обозвал :)

Да, конечно. Это в свое время Щерба показал на своей знаменитой фразе про "Глокая куздра штеко будланула бокра". Любой пятиклассник там легко определит части речи и сделает полный морфологический и синтаксический разбор, хотя ни слова непонятно.
В том-то и дело, что это не существительное -- слово, которое отвечает на вопрос "что?" а все наоборо: мы задаем именно вопрос "что?" к слову, которое ведет себя как существительное, т. е. изменется по числам и падежам. Мы просто ЗНАЕМ наизусть парадигму (совокупность всех форм) КАЖДОГО слова родного языка. Это ж офигеть! И дитям такое интересное не сообщают, а голову дурят. Безобразие, ящитаю.

Безобразие в чистом виде!
Причём это не только в русском.
Помню, ещё дошколёнком я зачитывалась замечательной книжкой Лёвшина и Александровой "Чёрная маска из Аль-Джебры", где в игровой форме даётся алгебра вплоть до седьмого класса. Причём мне всё было понятно!
В школе потом заставляли зубрить непонятные правила для решения уравнений: "Чтобы найти неизвестное слагаемое, надо.... Чтобы найти вычитаемое, надо..." А там правило было одно: при переносе через знак равенства - знак меняется на противоположный! Простенько и со вкусом.
Вы думаете, мне разрешали у доски отвечать, это озвучивая? Нет! Нужно было непременно твердить наизусть правила из учебника, которые, на самом деле, нифига не учили думать, а учили действовать по шаблону, да и только...

Теперь вот начиталась всяких историй про школу, и непонятно, то ли ребёнка туда отдавать, чтобы социализировался, то ли нуивонафек, пущай на домашнем обучении тусит...

"Причём мне всё было понятно!
В школе потом заставляли зубрить непонятные правила для решения уравнений: "Чтобы найти неизвестное слагаемое, надо.... Чтобы найти вычитаемое, надо..." А там правило было одно: при переносе через знак равенства - знак меняется на противоположный! Простенько и со вкусом."

Простите, мне кажется, здесь одна формальная логика заменена другой формальной логикой, может быть чуть более "простенькой", но такой же без"вкусной", поскольку смысл точно так же выведен за скобки, как и в первом случае. Ведь уравнение по сути имеет предметный аналог - это весы, которыми пользовались раньше на базарчиках продавцы. Весы с чашами, имеющие два "клювика" --, которые и указывали на равенство сравниваемых масс. И изначально смысл всех этих операций в любом из уравнений (в т.ч. решаемых и на предметном "базарном" уровне), имхо, таков: чтобы определить значение, скажем, х, нужно проделать некоторые операции, чтобы эта масса х осталась на одной из чаш весов, а равенство чаш сохранилось. Какие это операции? - Мы можем либо убрать, либо добавить на обе чаши одну и ту же массу. Вот и весь смысл. И правила решения уравнений отсюда вытекают, а не из абстрактной какой-то логики, которую бессмысленно нужно заучить и применить. И если даже правило какое-то, выведенное ранее, будет со временем забыто, ничего страшного, т.к. владея смыслом, можно легко заново его как бы породить, легко восстановить.

Edited at 2012-12-15 07:15 (UTC)

Наверное, мне было понятно в том числе и потому, что в той самой книжке как раз через весы всё и объяснялось!
Там был седобородый весовщик, который именно что с помощью клювиков показывал всякие фокусы с равенствами и неравенствами.
Так что сие правило было не с потолка спущено, а нормально объяснено.

Это хорошо, если так! Просто часто приходится встречаться с учителями, которые дают детям именно готовые формулы, не те, так другие, за которыми смысла нет.
Если хотите, то ещё более лучший вариант, на мой взгляд - наличие реальных весов в классе, позволяющих моделировать условия уравнений на предметном уровне. Каждое уравнение решается как проблемная ситуация. После этого детям даже и правил запоминать не приходится.)

математика в школе "Интеллектуал"


адрес видео на ю-тубе https://www.youtube.com/watch?v=PFzjZki1KF4&feature=player_embedded

Кстати, раз уж разговор зашёл именно о школе "Интеллектуал" и об осмысленности при изучении материала по математике, то ролик в этом отношении, к сожалению, не отвечает на этот вопрос. Там невозможно найти ответа на вопрос, понимают ли дети хоть малую толику из того, что им даётся в 1-м классе по этому предмету, соотносят ли всё это нагромождение формул со своей картиной мира.

Edited at 2012-12-15 13:20 (UTC)

  • 1